JIOH on LinkedIn JIOH on Facebook
  • Users Online: 2498
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2018  |  Volume : 10  |  Issue : 4  |  Page : 161-167

Various recent reinforcement phase incorporations and modifications in glass ionomer powder compositions: A comprehensive review

1 Department of Biomaterials and Prosthodontics, Universiti Sains Malaysia (Health Campus) Kubang Kerian, Malaysia
2 Department of Conservative Dentistry School of Dental Sciences, Universiti Sains Malaysia (Health Campus) Kubang Kerian, Malaysia
3 Department of Dental Materials, Universiti Sains Malaysia (Health Campus) Kubang Kerian, Malaysia
4 Department of Human Genetics and Molecular Biology School of Dental Sciences (PPSG), Universiti Sains Malaysia (Health Campus) Kubang Kerian, Malaysia

Correspondence Address:
Dr. Wan Zaripah Wan Bakar
School of Dental Sciences, 16150, Kubang Kerian, Kelantan
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jioh.jioh_160_18

Rights and Permissions

Glass ionomer cements (GIC) were first introduced to dentistry in the late 1960s and since have proven to be useful in various areas of dental science, particularly restorative dentistry. As an aqueous polyelectrolyte system, GICs are known for their relative ease of use, chemical bond to the tooth, fluoride release and recharge, low coefficient of thermal expansion, and acceptable esthetic quality. However, clinical usage of GICs is still limited due to their relatively inferior mechanical properties and sensitivity to initial desiccation and moisture. Years of extensive research on enhancing the chemistry of the basic glasses have yielded improved formulations with enhanced mechanical properties and reduced moisture sensitivity. A comprehensive review of the available literature has revealed that not all modifications in glass powder have resulted in the desirable strengthening of GICs. There is a shift of focus toward studies on nanoscale particles and bioactive glass. Recent research has proven that incorporation of nanoceramics such as hydroxyapatite (HA), fluorapatite, silica, and zirconia (ZrO2) have resulted in improved mechanical properties of GICs due to their ability to release fluoride, high surface area, and better particle size distribution. More work should thus, be undertaken to optimize techniques for enhancing the physicomechanical properties of GICs by incorporation of nanophases of ZrO2, HA, and metallic nanofillers.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded1011    
    Comments [Add]    
    Cited by others 9    

Recommend this journal